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Summary

A comparison of four ratio estimators based on interpenetrating subsamples and
with or without jackkniflng is done both theoretically and empirically with respect
to bias, variance and mean square error.
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Introduction

The method of interpenetrating subsamples (IPS) in large scale sampl
ing as introduced in Mahalanobis [4], [5], is to draw a sample in the form
of two or more subsamples under the same probability sampling design so
that each sub-sample provides a valid estimate of the parameter of
interest. The purpose of IPS is to assess both sampling and nonsampling
errors in the estimation of the parameter of interest. The United Nations
Subcommission on statistical sampling [11] has recommended the use of
IPS with a suggestion of an alternative name "Replicated Sampling." The
method of ratio estimation is common in large scale sample surveys in
estimating various ratios and the ratio estimator is biased. The Quenouille-
Tukey jackknife (see Miller [7]) gives nonparametric estimators of bias
and variance.

Consider a population of N units with y as the variable of interest and
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;c as an auxiliary variable. Denote the population totals of the variables x
and y over N population units by X and Y. The population ratio R =
(y/Z) is an unknown parameter of interest. We shall draw inference on
R on the basis of k interpenetrating subsamples of size m each, (xij, yu)
i = , m,j = . ,k. Consider four interpenetrating estimators
of R for any probability sampling design, two of which are jackknife
interpenetrating subsample estimators (JIPS) and the other two are just
interpenetrating subsample (IPS) estimators. Compare these four esti
mators theoretically and also empirically with respect to bias, variance
and mean square error (MSE). This comparison is done in Sections 3and
4 when the sampling design is simple random sample with replacement.

Let Yj and X) be unbiased estimators of Y and X from the ^th inter

penetrating subsample (j =1 k). Denote Y=^ and
Two IPS estimators of R are given by

R, =^ and ^2 =^2
y=l

Y,

Denote Y(u) = S Yjlik-l)
W=i,yV«

1 X{u) S Xjlik-\)

(1)

RiM = {Yiu)lXu)) and Ru.) = f ^ ^i(„)/A:Y The first JIPS estimator is
\u=l /

then

R, = kR, -{k-D Ru.). (2)

Let Yj(v) and Xj(^) be unbiased estimators of Y and X from the jth inter
penetrating subsample eliminating the vth unit. Denote rj = YjiXj,

m K

0(t.) = YnvilXjM, ^ 0(v), R2W = -j^ ^ 0(v) and
v=l

A ^ A .
jRa(.) = — > i?2(v). The second JIPS estimator is then

in
v=l

k ^ ^
, Ri. ^ [mn - (m - 1) o,.)] =mRi - (m - 1) i?a(.). (3)

7=1
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'Note that for A: = 2, i?2 = i?i{.) and hence from (2),

£ = {R, + R,)I2. (4)

For k = 2, from theoretical comparison, Ri and R3 are equally good
•over Ri and R^. For k > 2, both theoretical and empirical comparisons
suggest the superiority of R^.

The purpose of this study is to investigate whether jackknifing has any
positive impact on ratio estimation based on interpenetrating subsamples,

"in terms of reducing bias and mean square error.

2. Bias, Variance and MSE

'' Denote the bias of R, to the second degree approximation by Bi (i = 1,
2, 3, 4), the variance of Ri to the second degree approximation by and

y {R Var (Z(«,) - Cov (Z(„), 7(„))},
%=1 ^

BP = R Var (X) - Cov (X, Y),
k m •

^1'? = ^ ^ ^ {R Var - Cov {X^,

BP = ^ {R Var {X,) - Cov {Xj, Yj)].
7=1

It can be seen in Murthy [8] that

BP
k^X\

and Bi = kBi,

The estimators of .B,-, i — 1, 2, 3, 4, are as follows

B^ =
1 A A

- i?i),
k-\

A A .

B2 — ^-^1>

B3 — (k 1) Rj),

Bi = im —1) (i?3(.) —i?a)-

(5)

(6)

(7)

Take the expectations of B3 and B^ assuming and Ri, i = 1, 2, as



COMPARISON OF RATIO ESTIMATORS

estimators of 2?.

£W = W> - «!")•

Assume

Cov A, Xj,) = Cov ih W = Cov iXj, Yj,) = 0for j ^ (9)
The assumption (9) means that the estimators based ontwo different sub:
samples are uncorrelated.

Lemma 1. Under (P),

Eik) = B,.

Proof. The proof is clear by observing

k{k - 1) £(') =

(8)

(10)

-(11)

A

Note that may or may not be equal to Bi. It can however be checked
that, ?ox k = 2, Ba = Bi = i B2.

The estimators of V3 and Fj are

^ — 1

A

mk^

k

—^ ^ (•Rl(«) -^KO)^)
a=I

k m

y=l v=l

(12)

/\

The mean square error in estimating R by Ri is denoted by MSB,-. We
know • •

MSE,- = V.i + Bf, i = 1, 2, 3, 4. (13)

Consider MSE/ here to the second degree approximation. It can be iseen
in Murthy [8] that

MSEi = MSEa = ^ (Kj) - 2i? Cov {Yj, Xj)
y=l

+ R' Var {Xi)). (14)
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The estimators of MSEi, denoted by MSEt-, i = 1, 2, 3, 4, can be com
pared under any probability sampling design. Consider, however the
simple random sampling with replacement as the sampling design in
subsequent sections.

3. Simple Random Sampling

A

; _.Consider the problemof comparison of i?/ when the sampling design is

simple random sampling with replacement. We have Xj = Ny .'Sl^Xulmj,

r, = iV f S ytjim \ J50(v) =n( S , x,jl(m - 1)] and
\i=l J \|=1, iVv /

K / m \

Yj(y) = N[ s —1)1. It can be checked that

m m
A A A A

^j(y) = mXj, 2^ Yj(y) =mYi,
v=l V=1

: - p. ^^ k m

m{k —1) X{u) = ^ 2
;»1 v=l

yV«

k m ^

y=lv=l

(15)

3.1. Comparison of and E{B^ to the Second Order Approximation
Denote

; . k m m . . ^ A A A

C= 2 2 S Cov (A}(v), A}(v')) - Cov {Xm, Yjiy-i)]. (16)
; = 1 V=1 V'=l

Vj^V'

-Theorem 1.; Under {9)

• k*X* m{m - 1) E(B^) = kX^ ^ £(£4) + C.

Proof. It can be seen from (5) and (15) that

" = + e.

(17)

(18)
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It is now easy to check from (6), (8) and (18) that (17) is true. This com
pletes.the proof.

Now consider the intra-class model

,Var(^,,) = a2,,Var(F„)=.c2,

CoV {Xjj, Yij) = Pxv'̂ x'̂ vi COV (-Xii) ^i'i) ~
. cov (Yii, y.',) = cov (Xii. r,'i) = Piv^xc,.

Denote

Ci = Ho^Pxx —
C2 = (•R'̂ x —Pxv^x'̂ y) Cj.

Theorem 2. Under (P) and.{19)r

kEiB,) = E{Bd +Ci.

Proof. We get from (8) and (16).

(m - 1) C = N^kmim - 2) C, + N'k m{m - 1)^ Ci, ' (22)

mX" E{B^) = iV«C2,

mX'k E(:k)-= N^ [C2 + mC,],
This completes the proof.

Corollary 1. Tfpxx = Piy = 0 (i.e., Ci = 0), then under (P) and (19),
we have

' kE{%) = E{B^./ (23)

3,2. Comparison of E[Vs] and E[Vi] to the First Order Approximation

First a proposition is stated which is very useful in subsequent calcu
lations.

Proposition. Let t^, t^ be k random variables with Eiti), Var(ti)
and Cov(t{, tj), i ^ j, being constants independent ofi andjwhich are equal
to E(t), Var(t), and Cov{t, t'). Then

= (Ic - 1) [Var(0 - Gov(f, <')].

where / = (<! + ... + ti:)/k. It follows from (24) that

^1^3] = [Var(^i(„)) - Cov(.Ri(„), -Rkuo)]k

(m - 1)»
mkElh = Var

\^;(«) / \ /_

(19)

(20)

(21)

(24)

(25)
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where £'[^•3] and ^[F^] are constants independent of {u, u') and (v, v').
We find to the first order of approximation

Cov(2?i(u), Ri(.u')) — [Cov(F(„), Yiit')) —R Cov(A'(u), ?(«'))

- R CowiYM; + R^ Cov(Z,„), Z(„,))].
(26)

Considering the model (19) with pxx — Pj,„ = 9'xy = 0 and denoting o® = '
— 2R^Pxv <^0) Oy + R^ we get to the first order approximation

fj2Yar(i?i(„,) = _ 1) ^2 (27)

Cov(^zU)Jxuo) = • '

.r , sVar(o,.,) =

^ r ^ N^m-:2)G»L,o\{rj(t), rjit')) ~~ (m —I)* '

The following result is now easy to verify.

Theorem 3. Under (19) with Pxx = Pw = P'̂ y = 0, the sampling design
being simple random sampling with replacement, and to the first order of
approximation, we have

EiV^) = £(FJ = = V,. (28)

3.3. Conclusion

For k= 2, both R^ and R3 are equally good over R.^ and R^. Fork > 2,
Ri and R3 are better than Ra and R^ with respect to bias but R3 is not as
good as ^1, i?j and i?4 with respect to first order approximation of
variance.

- 4. Empirical Study (to the Second Order Approximation)

The population consists of the countries in 5 states in Mexico, namely
Chiapas, Chihauhua, Guerrero, Puebla and Veracruz. Consider three
different studies on the same population.

1:7= Total number of inhabitants

X = Total number Of households

II : Y =^Total number of literates

X = Total number of illiterates
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III : Y= Total number of persons in primary activities
X = Total number of economically active people

The data are obtained from the 1960 population general census inMexico.
The five states considered are very similar with respect to J? = (YlX) in
Studies I, 11 and III. Note that in III the data in 2 counties are unavail
able. Now draw 1000 times five subsamples of size 30 each by simple
random sampling with replacement^ In the following table we present
the average values of Ri, B^, Vi, MSEi for three studies. ^

In studies I, II and III, we find the average estimated bias in is about
5, 4and 3times than that in ^3. It is clear that, with respect to bias, R^
and JR3 are better than R^ and^^4. In comparison with respect to variance,
^2 is superior to Ru R3 and ^4. In studies I an^ III, Ri and i?2^1iave
smaller MSE. In study II, R^ has the largest MSE. In all studies i?i has
the smallest | B \ I {Vyi*.

TABLE A.l—THE VALUES OF N AND R

II in

N 672 672 670

R 5.39 1.13 0.67

TABLE A.2*—AVERAGE ESTIMATED RATIO, BIAS, VARIANCE
AND MSE IN STUDY I

Average Ri R2 ^3 Ri

R 53914 53954 53905 53905

{R - Ry 68.562 78.967 68.321 73.849

B 9.809 49.046 9.136 48.948

V 90.726 82.200 94.744 111.590

MSB 91.081 91.081 95.194 113.384

A A
•-

\B\IVV 460 3377 535 1136
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TABLE A.3*-AVERAGE ESTIMATED RATIO, BIAS, VARIANCE
AND MSB IN STUDY II

Average
A

Ri
A

i?2
A

Rs
A

Ri

A

R 11276 11076 11334 11318

{R - R)^ 408.07 356.02 429.67 436.65

A

B -50.35 -251.75 -57.30 -242.90

A

V 401.02 375.26 432.59 377.50

MSE 402.10 402.10 434.07 389.82

A A

\B\IVV 347 1846 319 1150

TABLE A.4*-average ESTIMATED RATIO, BIAS, VARIANCE
AND MSE IN STUDY III

Average
A

Ri
A

R,
A

R,
A

Ri

A

R 6752 7015 . 6668 6757

fli

1

41.200 37.867 47.889 46.944

A

B 65.710 328.550 84.867 258.730

A

V 40.464 22.220 52.783 33.782

MSE 41.224 41.224 54.350 44.330 .

A A

\B\IVV 977 5281 1051 4188

♦The entries in Tables A2 - A4 are multiplied by 10<.

5. Miscellaneous

In this section we present an additional JIPS estimator of R and
observe that it is in fact identical to an IPS estimator of R, or in other
words, the proposed jack knifing does not have any effect on this IPS
estimator.

Let Ti, . . . , f-fc be k estimators of R on the basis of k interpenetrating
subsamples of size m each and under the same probability sampling
design. Then r = (ri + . . . + rk)lk is an IPS estimator of R. Denote

= in +_... + r„-i +/-u+i + . . • + n)lik —1), u =3 1, .. . ,
and r,.) = (ra) + . . . + ra,))lk. Then R^=^kf- {k -_1) n.) is another
JIPS estimator of R, different from R^ andi?4. Clearly, r(.) = r = R^,
or, in other words, the IPS estimator is identical with the JIPS estimator
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R^. Now present an observation on unbiased estimator of Var(r). It is
clear that

k

Y&t{Rs) - /j ^ ('•(«) '•(•))' - 1) 2
tt = l , K=1

= VarW. (29)

Denote

k k

S S Cov(r„, r„,)
H=1 «'=!

5^= "%-!)
= the average of k(k — 1) covariances,

Cov(r„, /•„'), M7^ H, m' are in {1 k}.

Under the assumption E{ri) = ... = E(rie), it follows that

iE:[Var(r)] = Var(r) - Cov. (31)

If Cov = 0, then_yar(r) is an unbiased estimator of Var(r). If Cov > 0
(< 0), then Var(/-) underestimates (overestimates) Var(r).
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